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Abstract-The buckling mode of a structure is defined to be symmetric if its sign is indefinite; this happens when
the potential energy expansion near the buckling point does not contain terms which are cubic in the buckling
mode. If, in addition, the cubic terms vanish identically for all possible modes then the structure is defined to be
"completely symmetric". Many structures of technical significance are included in this definition, such as columns,
plates, frameworks, etc.

If certain technically realistic order-of-magnitude assumptions are made, the analysis of the buckling and post
buckling behavior of completely symmetric structures can be carried out in great generality. For example, it is
shown in the present paper that structures of this type buckle under increasing loads and are therefore insensitive
to initial imperfections. The post-buckling state is characterized by the satisfaction of a minimum complementary
energy principle, which represents an extension of the corresponding classical principle into the nonlinear domain.
Moreover, the energy can be bracketed between upper and lower bounds and an error estimate is thus established
at least in an averaging sense.

Under certain circumstances the load approaches a finite value as the structure approaches collapse. This
collapse load can also be bracketed between classes of "statically admissible" load parameters (representing
lower bounds) and "kinematically admissible" load parameters (representing upper bounds). The gap between
these bounds can be reduced arbitrarily,

The example ofa slender statically indeterminate beam subjected to lateral and torsional buckling is introduced
to demonstrate the general principles developed in the paper.

1. INTRODUCTION

THE "CLASSICAL" theory of the stability of elastic structures was substantially completed
in the first part of the current century [1]. A major advance, although barely noticed at the
time because of the German occupation of the Netherlands, occurred with the publication
of Koiter's doctoral thesis [2] in 1945. This work, itself now a classic, has served as focal
point for a large number of further investigations [e.g. 3-11] of the stability of the critical
buckling point itself or, equivalently, of the behavior of the structure immediately after
buckling. The problem is now well understood, at least in principle.

In contrast, few general conclusions appear to have been derived thus far about the
behavior of structures with large buckling deformations. The present study concerns itself
with this problem. It will be shown that the post-buckling response of certain types of
structures is governed by boundedness theorems which make it possible to develop
approximate analytical techniques with error estimates. Moreover, under certain cir
cumstances these structures may collapse as the loads approach limiting values. Although
elastic behaviour is postUlated, even in the limit, these collapse loads can be bracketed

. t This work was supported by NSF Grant GK-368 to the University of Illinois at Chicago Circle, Chicago,
IllInOIS.
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between upper and lower bounds in a manner which is reminiscent of the methods applic
able to the theory of perfect plasticity.

In essence, Koiter's contribution consisted in developing a perturbation expansion of
the potential energy near the critical point of bifurcation of the equilibrium configuration
in terms of an amplitude parameter. With the first-order terms automatically vanishing
(as they do for all points of equilibrium), bifurcation occurs when the smallest admissible
value (identified with the buckling mode) of the second-order term vanishes. The question
of stability is then governed by the third and fourth order terms, although, under excep
tional circumstances, even higher-order terms may become significant. In particular, if
the third-order term in the expansion of the potential energy relative to the actual buckling
mode does not vanish, the point of bifurcation is unstable. If it does vanish, stability is
determined by the smallest admissible value of the fourth-order term. In this case a struc
ture may be designated to be "symmetric" in the sense that two buckling configurations
(identical except for their sign) are then equally possible.

2. BASIC DEVELOPMENTS

In the present paper we define a structure to be "completely symmetric" if the third
order term in the expansion of the potential energy vanishes identically, rather than in
relation to only the actual buckling mode. Technically significant examples of completely
symmetric structures include columns, plates, many types of frameworks and trusses, and
beams buckling laterally; counter-examples are arches and shells, which may nevertheless
be "symmetric".

The establishment of complete symmetry is often predicated on the validity and
technical realism of certain order-of-magnitude assumptions. That is, we divide the
displacements describing the configuration of a structure into "primary" ones (designated
by u) which are small in the sense that they appear only linearly in the strain-displacement
relations, and "buckling" displacements (designated by v) which require the inclusion of
quadratic terms. This is a reasonable assumption and lies at the root of most technical
buckling theories. A structure which buckles elastically always exhibits some geometric
pathology in that some dimensions are much smaller than others, as is obviously the case
with "slender" columns, "thin" plates, etc. It is therefore reasonable to assume that the
displacement fields exhibit corresponding inequalities. For example, in the case of a buckled
column the axial displacement u is much smaller than the lateral displacement v. If a beam
buckles laterally under the effect of bending moments and/or axial thrust, the axial deforma
tion and the deflection in the strong direction is primary and is therefore designated,
collectively, by u; the collective designation v applies to the vector whose components are,
respectively, the deflection in the weak direction and the rotation.

Associated with these two types of displacement fields are two types of generalized
strain fields e and k, respectively, so that the strain energy density (per unit length, area,
etc.) can be written in the form

u = U 2(e) + U~(k) (1)

in which both U 2 and U~ are assumed to be quadratic in their argument for the purposes
of the present paper. For example, U 2 may represent the membrane energy and U~ the
bending energy in a plate, with e and k designating the membrane strain and curvature
tensors, respectively.
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In line with the previous discussion the strain-displacement relations are of the form

e = I1(u)+tI2(v)

k = k(v)
(2)

in which 11 and k are linear and 12 quadratic in their arguments. In order that the structure
may be "completely symmetric" it is essential that no linear term in v be present in the
expression for e; straight beams and plates, for example, conform to this requirement, but
arches and shells do not.

The possibility of buckling in the sense of bifurcation may occur if the loads act only
on the primary displacements u. Assuming, without loss of significant generality, that all
kinematic constraints are workless, we then write the boundary conditions in the form

(3)

L(v) = 0 on B

in which A is a load parameter, L a system of linear operators, and in which B = Br +Bu

represents the total boundary. W is the work done by the loads, and WI is linear in its
argument.

Generalized stresses t and m (denoting, for example, membrane force and bending
moment tensors, respectively) are defined by means of the linear constitutive relations

dU2
t=

de

dUz
m = dk .

(4)

We note that the internal work density is given by the sum of the inner products t. e and
m.k.

In the absence of body forces the potential energyt

n= U-W

serves to express the equations of equilibrium in the variational form

(jfl == t .1 1(U)-AW1(U) = 0

c\n == t .I l1(VV) + m. k(V) = 0

(5)

(6)

(7)

in which U, V cover the rangej of kinematically admissible displacements satisfying the
second and third boundary conditions in equation (3). We note that equations (6) and (7),
in addition to equilibrium, imply also the natural boundary conditions. In equation (7)

t Whenever no misunderstandings can arise, the same symbols may denote densities or global values. With
the exception of equation (9), inner products represent global quantities, i.e. integrals, summations over discrete
members, etc.

:j: In general, classes offietds are designated by capilalletters (as in U), specific fields by small letters (as in u).
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and hereafter we define bilinear forms by means of the identity

Iz(v+ V) = Iz(v)+21 1 ,(vV)+lz(V) (8)

and note that, as a consequence, I,,(vv) = Iz(v).
Assuming equation (4), to have the inverse e = e(t) we define the complementary

energy density Ui(t) in the usual fashion by means of

and hence

dUj
e=--.

dt

(9)

(10)

If T comprises the class of all self-equilibrated stress systems satisfying homogeneous
natural boundary conditions (A = 0), then

II' T = 0 (11)

by equation (6); with equations (2), and (10) this becomes the condition of compatibility

[d~l_~lz(v)J . T == 2Uf,(tT)-~lz(v). T = O. (12)

Equation (7) and (12) form the basic system of equations governing the behavior of the
structure in terms of the (mixed) variables v and t.

The unbuckled state is characterized by v = 0 and t = Ato; equation (12) reduces to
the conventional "virtual work" equation

Uf,(toT)=O (13)

while equation (7) is automatically satisfied. In the buckled state (assuming the same load
parameter) the stress field is

t = AtO+t' (14)

in which t' E T is self-equilibrated. In view of equations (13) and (14), equation (12) becomes

2Uf,(tT)-ilz(v).T = 0 (15)

which, with the special substitution T = t', implies

2Uj(t') = it' .Iz(v).

We rewrite equation (7) in the form

dU.i. k( V)+ (Ato+ t') .I,,(vV) =0
dk

and note that, for V = v, equation (17) implies

1z{1e;t';v) == U~+t(Ato+t').lz(v) = O.

(16)

(17)

(18)

Moreover, with 1z defined as in equation (18), equation (17) represents o,,1z = 0 for fixed
Ie and t' and hence constitutes a necessary, though not sufficient, condition that the actual
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displacement vector v minimize l z , that is,

I z(A.; t ' ; V) 2 l z(A; t ' ; v) = o.

The second variation of l z is given by

b~1 z(A; t ' ; v) = l z(A; 1'; bv) = U~[k(bv)] +t(Ato + t') .Iz((jv).

(19)

(20)

Moreover, for given load parameter A, the change AO in the potential energy between the
actual state and any other admissible state is

AO = 1z(A; t ' ; bv) + U~(bt') (21)

with bv, bt' representing the change in the associated displacement and stress fields,
respectively. The last term on the right side of equation (21) is positive definite; the actual
state therefore corresponds to an absolute minimum of the potential energy °if inequality
(19) is satisfied.t Unless otherwise noted this will be postulated in what follows.j

3. INITIAL BUCKLING ANALYSIS

With the introduction, as in [2], of the expansion parameter e by means of

bv = eV l +ezvz+ .
bt' = et'1+eZt~ + .

equation (21) becomes

An = eZOz +e303 +e4 0 4 + ...

0z = l z(A; t ' ; vd + U~(t'l)

0 3 = 21 11 (A; t ' ; v1VZ) + 2U!1(t~t~)

0 4 = 21 11(A; t ' ; VI v3)+ l z(A; 1'; vz)+ 2U! 1(t'1 t~)+ U~(t~).

(22)

(23)

Similarly, with the substitution of t ' + <5t' for t ' and of v+bv for v in equation (15) and with
the use of equation (22), the expanded compatibility equations

2U!1(t'1 T') = 0

2U!1(t~T') = t1z(v1). T'

2U!1(t~T') = 111 (V 1VZ)' T'

(24)

furnish the connection between the additional stress fields t; and the additional displacement
fields Vi appearing in equations (23). We note in particular that, with T' = til and in view of
the positive definiteness of U~, equation (24)1 implies

t~ = O. (25)

t This does not establish uniqueness, of course. For example, it follows from the complete symmetry of the
structure that dn = 0 if ov = -2v,ot' = o.

t Exceptions (implying "secondary buckling") may occur near multiple roots of equation (17).
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The unbuckled state (t' = v = 0) becomes "critical" and incipient buckling becomes
possible (A = Ao) when the smallest admissible value of Oz vanishes, or, by equations
(23}z and (25)

(26)

(27)

this represents the familiar eigenvalue problem of linear buckling theory. The remaining
terms in equations (23) are evaluated through the use of equations (25) and (26) (with
V = V z and V = V3, successively), namely,

0 3 = 0

0 4 = I z(Ao; 0; vz)+ U~(t~)

in which t~ is connected to VI through equation (24}z. Since both U~ and I z are non
negativet we conclude that completely symmetric structures exhibit stable buckling points.

According to Koiter [2], it follows as a corollary that this type of structure buckles
under increasing (or at least not decreasing) load. This can be verified in the present case
by expanding Anear the point of bifurcation,

(28)

(29)

(30)

and by expanding the actual buckling deformation v and additional stress t' as in equation
(22). The compatibility conditions then are identical with equations (24), while equations
(17) become

m(v l )· k(V)+Aoto .l ll (v l l1 = 0

m(vz) . k(V) +Aoto .1 11(v Z V)+(A I to + t'1) .lll(V 1V) = 0

m(v3). k(V)+ Aoto .l ll (V3 V) + (AI to + t'd .I ll (vz V) +(Azto+t~) .l ll (v l V) = O.

From equation (24)1 (with T' = t'l) it follows that t'l = 0 as before. Identifying t; through

tto .Iz(vd = -1

(i = 2,3, ...)

and subtracting equation (29)1 (with V = vz) from equation (29}z (with V = VI) we establish

(31)

as expected. Applying the same procedure to equations (29h and (29h (with V = V3 and
V = VI' respectively) and making use of equations (30) and (31) results in

2Az = t~ .Iz(vd·

In view of equation (24)z (with T' = t~) this impliest

)z = 2U~(t~) 2 O.

(32)

(33 )

t The latter since 12().0; 0; vIl = 0 is the smallest possible value.
t Apparent counterexamples have been cited by Britvec and Chilver [3], among others. We note, however,

that if the order of magnitude assumptions made in the present paper are applied to the statically determinate
trusses analyzed by these authors, then their (relatively minor) initial instability phenomenon disappears and the
trusses buckle under constant load. In contrast, statically indeterminate trusses may buckle under substantially
increasing loads, as pointed out by Masur [12].
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It can be shown that the load parameter (2 > 0) is monotonically increasing (or at
least non-decreasing) throughout the postbuckling history. That is, if the "path length" S
is defined by

then

for any continuous process.t

d2
->0
dS -

(34)

(35)

4. POST-BUCKLING ANALYSIS, GEOMETRIC INTERPRETATION, AND
BOUNDEDNESS THEOREMS

In the analysis of the post-buckling behavior it is convenient and instructive to intro
duce geometric analogies which appeal to visual intuition without losing rigor. We may,
for example, construct a function space which is based on the stress field t in such a way
that if t l and t 2 are any two stress fields associated with the strain fields e l and e2 , respec
tively, through equation (10), then the inner product (t l , t 2 ) is defined by means of

(t l , t 2) == t l · e2 = 2U!I(t l t 2 ) = t 2 . e l = (t2 , t l ). (36)

Equation (36), with t l = t 2 , defines the "distCince" in the function space; moreover,
because of the Schwarz inequality, the angle between two vectors is real.

In particular let T' represent the class of all "self-equilibrated" stress fields satisfying

(37)

for all displacement fields U, and satisfying, in addition, the homogeneous boundary
conditions on Bt • Let T" represent the class of all "self-compatible" stress fields satisfying

dU*
d/ (T") = II(u")

u" = 0 on Bu.
(38)

It then follows that the two classes of stress fields are mutually orthogonal in the sense that

(T', T") = 0 (39)

for any pair of members.
They are also "complete" in the sense that any given stress field T may be split uniquely

into

T = T'+T".

In fact, it follows from equations (40) and (37) that

T" .II(U) = T .II(U)

(40)

(41)

t This is proved through a procedure which is similar to the one employed in the establishment of equations
(31) and (33). We start again with the basic equations (15) and (17), which we differentiate with respect to S, and
make use of the inequality (19).
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for all kinematically admissible displacement fields U. This represents the equations of
equilibrium and the natural boundary conditions on Bp with the right side taking the
place of a body force field or a boundary traction field, respectively. Since equations (38)
constitute the stress-displacement equations and boundary conditions on Bu the system
of equations governing T" and u" is presumed to be determinate. Equation (40) finally
serves to find r.

We now consider the space of all self-equilibrated stress fields r. For given load
parameter ), a "stable" point Q may be identified by the inequality

[z(...1 ; TQ; V) > 0 (42)

for all kinematically admissible displacements V which do not vanish trivially. If there
exists at least one displacement field V for which l z becomes negative, a point is defined
to be "unstable". The totality of all "critical" points P satisfying

(43)

then forms a "hypersurface" S which separates the stable and unstable regions. We note
that, by equation (19), the actual stress t' lies on S, with Vp == v.

It is easy to show that S is convex. For given A let Q be a stable point, and let P be a
critical point satisfying condition (43). By inserting V = Vp into inequality (42) and by
subtracting equation (43) it follows that

If now a point R is identified by

(44)

T~ = Tp+o:(Tp-TQ)

then

(0: > 0)

R is therefore an unstable point, and the line QPR cuts S only at P. Since both Q and P
are arbitrary the convexity of S has been proved.

If Vp in equation (43) is unique (except for an arbitrary multiplier) we define the strain
field ep and the associated stress field N p (and its self-equilibrated and self-compatible
"components") by means of

ep !I z(Vp )

N p == t(ep) = Np+Np

(Np, Np) = 1

(45)

in which the normalizing condition has been added for the sake of definiteness. From
equations (44), (45) and (39) it follows that

(TQ Tp,Np) > 0 (46)
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for all stable points Q; this impliest that N~ is normal to S at P and points "inward".
If Vp is not unique, say, Vl or V2, then, in general,

Vp = CX l Vt + CX2V2

12(Vp ) = CXi12(Vd + 2CX l CX2111(Vl V2)+cx~12(V2)

N~ = cxiN~l +2CXlCX2N'12 +CX~N22

and N~ sweeps out an elliptic conical surface (which flattens to a plane if N'lI , N'12, N~2
exhibit linear dependence). Equation (46) then implies that there is a manifold of normals
to S which lie inside or on the elliptic cone (or, in the special case, on the plane). Conversely,
S exhibits an apex whose tangents form a cone which is perpendicular to the cone formed
by the normals.

For the sake of definitenessj let

(48)

for all V, and let P be a critical point associated with the loading parameter A. For A.' > A,
it follows from equations (43) and (48) that 12(A.'; T~; Vp ) < 0 and hence that P lies "outside"
the critical surface S identified with A.', or, equivalently, that critical surfaces S lie "inside"
one another for increasing values of A.

We now insert T' = TQ-t' in equation (15), with Q representing any stable or critical
point and t' the actual stress, and consider equation (44) (with T~ = t', Vp = v). Then

or, with t' #- TQ,

(t', t') ~ (t', TQ)

(t', t') < (TQ,TQ).

(49)

(50)

In other words, the actual stress point is closer to the origin than any other point either
on or inside S. This represents an extension ofthe familiar Castigliano principle of minimum
complementary energy to the non-linear post-buckling case.

Figure 1 represents the post-buckling history in the space of the T' stresses. For A < Ao
the origin itself is stable and therefore coincides with the actual stress point in the unbuckled
state, as expected. For A > Ao the actual stress point "travels" with the associated critical
surface S in such a way as always to be as close as possible to O. We note that the stress
path C is not necessarily normal to S except for incipient buckling when A = Ao; in that
case v approaches Vl and t' points in the direction of N'.

In general the analysis of the buckled state (A > Ao) presents formidable analytical
difficulties. By means of an approximate procedure, however, it is possible to bracket the
magnitude of t' between lower and upper bounds which may be narrowed to within any
prescribed limit. An error estimate is therefore available as well as a scheme of reducing the
error.

Let T~ represent any self-equilibrated normalized stress field [i.e. (T~, T~) = 1] and
assume that T~ = /ff~(f3 > 0) defines a point P on S by satisfying the relationship (43).

t Actually the convexity of S can also be deduced directly.
:t This may require restrictions on the class of admissible displacement fields, as for example, in the case of

plates subjected to shearing stresses, beams buckling laterally, etc. Unless such restrictions are imposed the
spectrum of eigenvalues may include negative values.
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FIG. I, Space of self-equilibrated stresses,

With Npdefined as in equation (45) the magnitude of the actual stress field t ' is then bounded
from both below and above by the inequalities

!Tp.12(Vp ) (Tp,Np) S + (t', t'}! S p. (51)

The proof of these bounds is facilitated by consulting Fig. 2. The second inequality
follows directly from the convexity of S or, equivalently, from the inequality (50). The term
on the left side ofthe inequality (51) represents the distance OP". This is the shortest distance
from 0 to any point on the tangent plane; in view again of the convexity of S this proves
the first inequality.

The calculation of f3 and Vp by means of equation (43) constitutes a linear eigenvalue
problem which may still involve substantial numerical labor. This can be reduced further
through the application of a "modified Rayleigh" process based on a corollary to the first
of the ine!=jualities (51). Assume any normalized stress field T~ and any displacement field
VR subject to the normalizing condition (NR, NR) ::::: 1 and subject also to the restriction

FIG, 2. Upper and lower bounds in stress space.
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IfT~ = {3RT~, with the "Rayleigh coefficient" {3R > 0 satisfying

12(A;T~; VR ) = 0,

then

(52)

1T~ .liVR ) = (T~, NR) ::;; + (t', t')!. (53)

This establishes a simple lower bound to the magnitude of the actual stress field t'.
The proof follows from the fact that by equation (52) the stress point R lies either on

or outside of S. Moreover, all points T' satisfying

(54)

lie on a hyperplane which is normal to the vector NRand which passes through R since,
by equations (52) and (54),

IiO;T'-TR;VR ) == (T'-T~,N~) = O.

Since the hyperplane lies everywhere outside of S, inequality (53) represents a corollary
of the first inequality (51). We note, however, that no upper bound has been established
since f3 R ::;; {3.

If the unit vectors T~ and N~ satisfy (T~ . N~) = 1 and are identical, then Tprepresents
the correct stress field t', and the inequalities (51) become identities. We also note that if the
eigenvalue problem equation (43) has a multiple root [as, for example, in equation (47)],
then the largest lower bound in the inequality (51) is obtained by maximizing (Tp, Np).

5. INITIAL IMPERFECTIONS

In Section 3 it was shown that completely symmetric structures exhibit stable points
of bifurcation. Unlike the case of "imperfection-sensitive" structures (such as shells or
rings under special conditions), the effect of initial imperfections on the buckling strength
is therefore generally moderate and never catastrophic. Nevertheless, a study of initial
imperfections is instructive and included for completeness.

In the spirit of the order-of-magnitude assumptions made previously it is reasonable
to postulate only initial imperfections v* (and not u*). While equation (1) remains valid,
equations (2) are replaced by

e = 11(u)+I11(v*v)+112(v)

k = k(v).
(55)

The constitutive equations (4) and (10) are also unchanged, as is equation (14), in which ta
continues to be interpreted as the stress in the unbuckled perfect structure subjected to a
unit load parameter. The actual behavior is governed by the compatibility and equilibrium
conditions, respectively,

2U'1't(t'T')-[111(v*v)+tI2(v)]. T' = 0

m(v) . k(V) + (.Ha+t') . 111 (v V) = - (Ata+t') .1 11 (v* V).

(56)

(57)

We distinguish several possibilities depending on the order-of-magnitude of the initial
imperfection v* and of the buckling displacement v.
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Case 1. Small imperfections and displacements

We replace v* by w* and v by w, and linearize the equations relative to the small
parameter 8. By equation (56) this implies that l' is replaced by £21', and equation (57),
after linearization, becomes

(58)

Since equation (26) can be written in the form

(59)

a comparison shows that if the initial imperfection v* is affine to the buckling mode v1

of the perfect structure then the displacement of the actual structure is also affine to VI '
that is,

(60)

This is the basis for the familiar Southwell plot which is applicable to linear theory.

Case 2. Small imperfections,finite displacements

If v* is replaced by w*, but v is held finite, then equations (56) and (57) degenerate to the
equations governing the perfect structure. This confirms the well-known fact that the
extended post-buckling behavior of structures is not affected by small initial imperfections.

Case 3. Finite initial imperfections, small displacements
In that case the lowest order terms for v, l' and Astart with £, and equations (56) and (57)

become, respectively,

2UTI(tT) = T' .111(V*V)

m(v).k(V) = -(Ato+t').111(V*V).
(61)

This system of equations is typical of the linearized equations of shallow shell theory.
with v* taking the place of the deviation from flatness.

Case 4. Special case

Let

(62)

as, for example, in the case of a shallow cylindrical shell segment under axial ~ompression
or torsion; then equations (56) and (57) admit the "unbuckled" solution

V=t'=o (63)

as if the structure were initially perfect. If now bv and bt' are expanded as in equation (22),
then ~Q in equation (23) is unchanged, whereas compatibility conditions equations (24)
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become

(t'1' T) = 111(V*vd. T

(t~, T) = [1 11 (v*V2)+!12(v!l]. T

(t~, T) = [l ll (v*V3)+I 11 (V 1V2 )]. T.

Bifurcation occurs again when the smallest admissible value of O2 vanishes; by
equation (23)z this implies

2Ill(.AO;O;V1V)+(t'1;T1) = 0

for all admissible Vand provided T1 is associated with V through

(65)

(T;, T) = 111(v* V) . T (i = 1,2, ...) (66)

which represents the variation of equation (64)1' In particular, if V == V 1 then, by equations
(66) and (64)1' O2 = 0 as expected; however, U~(t~) > 0, in general, and hence 12 < O.
By equation (48) this implies that the critical buckling load Ao is raised as a result of the
initial imperfection. 0 3 is obtained from equation (23h. By equation (65), with V = V 2 ,

0 3 = (t~, t~) - (t'l> T 1)

in which T 1 is compatible with V2 . Using equation (66) (with V = V2 , T = t 1) we find

0 3 = tt~ .1Z(vd. (67)

Similarly, from equation (23)4 and the use of (equations (65), (66) (V = V3), (T' = t 1) and
(64h (T' = td,

(68)

If 0 3 # 0 the point of bifurcation is necessarily unstable. For 0 3 = °the symmetry
(although not the "complete symmetry") of the structure is preserved, and stability is
determined by minimizing 0 4 , This leads to the deformation mode V2 governed by

(69)

in which

(70)

(obtained from equation (66)2 by inserting t~ for T) represents the connection between
T~ and V. Eventually,

(71)

and the critical point is stable or unstable according to the sign of (04)min' An extensive
discussion of this question was first presented by Koiter in [2].

6. LIMIT ANALYSIS

Under certain circumstances the hyper-surfaces S may be closed; in that case they may
shrink to a point as the load parameter and associated stress field approach the finite
values of A = Ac and t' = t;, respectively, while the displacements increase indefinitely.
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Let this collapse mechanism be identified by

v = MVe

!-to .12 (ve) = -1

with M ---+ 00 and equation (15) becoming

12(ve). T = 0

(72)

(73)

for all self-equilibrated stress fields T. [Equivalently this means that the stress field asso
ciated with lAve) is self-compatible.] Equation (17) becomes

which, with V = Ve and equation (73) implies

12(Ae ; 0; vJ = 0 .

(74)

(75)

Because ofthe nonlinearity ofthe governing equations the determination of the collapse
load Ae and associated collapse mechanism Ve and stress field t~ may present formidable
analytical difficulties. These can be partially circumvented by "bracketing" the actual
collapse parameter Ae between a class of "kinematically admissible" load parameters Ak
and a class of "statically admissible" load parameters AS' of which the former represent
upper bounds and the latter lower bounds to the actual collapse parameter.t

Define a kinematically admissible collapse mechanism Vk and associated kinematically
admissible load parameter Ak by

(for all T) (76)

(77)

in which equation (77) implies that, during collapse, the external rate of work at least
equals the internal energy dissipation.

Define a load parameter As to be "statically admissible" if there exists at least one
stress field t~ such that

(for all V). (78)

This implies that, with the stress field so defined, the structure is stable. We note that neither
the displacement field Vk nor the stress field ( need be the actual fields at collapse.

If equation (78) (with V = Vk) is subtracted from equation (77) and equation (76) is
considered, then

(79)

Since U~ > 0 this implies that Ak ~ As. Moreover, since the actual collapse parameter I'e
is both kinematically and statically admissible,

(80)

t The language used is obviously borrowed from perfect plasticity theory. This is not accidental since, in
essence, all proofs introduced in the present study are based on the convexity of the critical surfaces S, while the
limit theorems of perfect plasticity are based on the convexity of the yield surface. The difference between the
two approaches is only one of selecting the proper space.
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THEOREM.

The collapse load parameter is the smallest of all kinematically admissible and the largest
of all statically admissible load parameters.

A necessary condition for the existence of a collapse load has not been established as
yet. We note, however, that the existence of a kinematically admissible load parameter
and collapse mechanism satisfying equations (76) and (77) is sufficient.

7. EXAMPLE

As a demonstration example we introduce the case of a narrow rectangular beam of
width b and depth h which is subjected to a bending moment M in its plane of major stiffness
(see Fig. 3). The beam is fixed in its major plane at the far end and is therefore statically
indeterminate to the first degree relative to its major bending moments. To simplify the
calculations, however, it is assumed to be simply supported at both ends with regard to
lateral deflections and rotations.

In conformity with the notation selected in the remainder of the present study we let
el and e2 represent the axial strain and the curvature in the major plane, respectively, and
t l and t2 the associated axial force and major bending moment. Also, k l and k2 represent,
respectively, the curvature in the minor plane and the twist, and the associated minor
bending moment and torque are identified by ml and m2 , respectively. With this notation

and

U~ = ~IL (E+ d) dx
2 0 Al A 2

U'z = ~ f: (Blki + B2k~) dx

(81 )

t 1e l =
Al

ml = Blk l

t2
e2 =

A2

m2 = B2k2·
(82)

M
VI

Ci
~
'/
/

X '/

~'/ / ,/,
'/

L

FIG. 3. Illustrative example: lateral buckling of rectangular beam.
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The strain-displacement relations are

e l = U'l +1(V~2+ g2v~2)

k 1 = v'{
(83)

(84)

in which (again in conformity with the notation employed throughout this paper) U I and
U2 are the axial and major bending displacement, respectively, VI represents the bending
displacement in the minor direction, V 2 the rotation, primes (as in u'Il derivatives with
respect to x, and g = (A 2/A I )! is the radius of gyration.

Because of the rollers at the left end we set t 1 = 0; this identifies U 1 in terms of v I and
v2 . After dropping the subscript 2 the major bending moment t then takes the form

t(x) = M [1 - (1 +r)il
with the generalized (single parameter) self-equilibrated bending moment

x
T=

L

and the compatibility condition equation (12)

I
f. tIl"-·xdx+ V'{V2xdx=0.
o A z 0

(85)

(86)

In the unbuckled state the second integral in equation (86) vanishes; substitution of
equation (84) in equation (86) then leads to r = t as expected. In the buckled state the
bending moment can therefore be written in the form

with

c = -- 3[~,}Lv'{ vzx dx

obtained by inserting equation (87) into equation (86).

Equation (18) becomes

and, through variation,

tv'{ + B2V~ = 0

(87)

(88)

(89)

(90)

in which the first equation has already been integrated twice, the constants of integration
vanishing on account of the boundary conditions. If VI is eliminated through the use of
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the first of equations (90) we are finally led to

(0:::;; x :::;; L)
(2

V~+--V2 = 0
B1B2

V2(0) = viL) = 0

in which (is given in equation (87) and c can be expressed in the form

(91)

(92)

Equation (91) has been solved for various values of c by Salvadori [13]. The solutions
identify the eigenvalue M and the buckling mode V2; the amplitude of V2 is related to c
through the compatibility condition equation (92).

The results are shown in Fig. 4, in which the non-dimensionalized applied moment is
shown as a function of the amplitude of v2 . As expected, the value of the coefficient of M
increases during buckling and reaches a limiting value of 8·25 at collapse. Since the corres
ponding value at incipient buckling is 7'32, this represents an increase of about 13 per cent.

ML

8.25

7.32

5.56
Simply supported

FIG. 4. Load vs. buckling amplitude.

Of more practical significance is the fact that if the right end of the beam is not fixed
but elastically restrained against rotation in its major plane (by being attached, for example,
to a column or to another beam), then the value of the critical moment coefficient of buckling
is less than 7'32, its minimum value being 5·56 as the stiffness of the right support approaches
zero. Nevertheless, for any non-vanishing support stiffness collapse occurs at the same limit
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value of 8'25, although the rotation required to approach this value increases with diminish
ing stiffness. This behavior pattern is analogous to a similar pattern which has been pre
dicted and experimentally confirmed previously by Masur and Milbradt [14].
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A6cTpaKT-Onpe,ll.eJIlleTCll, 'iTO <!lopMa nopMa nOTepH YCTOH'iHBOCTH llBnlleTcli cHMMeTpH'ieCKOH, ecnH ee
3HaK HeOnpe,ll.eneH. 3TO npOHCXO,ll.HT, KOr,ll.a pa3nOllCeHHe nOTeHUHanbHOH 3HeprHH 6m13H TO'lKH nOTepH
yCTOH'IHBOCTH He CO,ll.epllCHT Ky6H'IecKHX 'ineHOB B BblpallCeHHH ,ll.nll<!lopMbl nOTepH YCToil'lHBOCTH. EcnHllCe,
Ky6HnecKHe nneHbl HC'ie3aIOT H,ll.eHHI'iHO ,ll.nll Bcex B03MOllCHbIX <!lOPM nOTepH yCToil'iHBOCTH, TorAa CHCTeMa
RBnlleTCR nonHO CHMMeTpl1.'iecKau. 3TO onpe,ll.eneHHe 3aKnlOnaeT 60nbWHHCTBO CHCTeM, HMelOWHX Tex
HH'ieCKHe 3Ha'ieHHe, TaKHX KaK KonOHHbl, nnaCTHHKH, <lJePMbI H ,ll.p.

ECRIi npHnllT HeKOTopble TeXHH'ieCKH peanbHble, B CMblcne nOpll)l,Ka BenH'IHebl, npeAnonOKeHHlI, TO
MOllCHO npHBeCTH aHanH3 nOTepH yCToil'IHBOCTH ,ll.nll nonHO CHMMeTpH'ieCKHX CHCTeM C 60nbWOH
06WHOCTbIO. Ha npHMep, B HaCTOliweH pa60Te, npHBO,ll.HTClI, 'iTO CHCTeMbl 3Toro Tlilla Ha'lHHaIOT TepllTb
YCTOH'iHBOCTb no)l, BnHllHHeM pOCTa HarpY3KH H 3aTeM OHH OCTaHOBnHBaIOTClI He'iYBCTBHTenbHbIMH Ha
Ha'ianbHble HeTO'iHOCTH. COCTOllHHe nocne nOTepH YCTOH'iHBOCTH, xapaKTepH3yeTclI BblJIOnHeHHeM
npHHUHua MHHHMyMa ,ll.OnOnHHTenbHoil 3HeprHH, KOTopoe lIBnlleTClI npO,ll.OnllCeHHeM COOTBeTcBylOwero
KnaCCIl.'iecKoro npll.HlIll.na Ha HenHHeHHYIO 06naCTb. KpOMe Toro, 3Heprll.1I MOllCeT 6bITb 3aKnlO'ieHa MellCAY
BepXHHM H Hll.llCHHM npenenOM. OueHKa norpeWHOCTH OCHOBbIBaeTClI, TaKHM 06pa30M, He cpenHeM
3Ha'leHHIl..

B HeKOTopbIX ycnoBHlIX, Harpy3Ka npH6nHllCaeTClI K KOHe'iHoMy 3HayeHHIO KOr,ll.a CHCTeMa 6nH3Ka K
pa3pyweHHIO. HarpY3Ka pa3pyweHHlI MOllCeT 6bITb TaKllCe 3aKnO'ieHa MellC,ll.y napaMeTpaMIl. HarpY3KH
"CTaTIl.'iecKH ,ll.OnYCTHMbIMH" /KOTopble npe,ll.CTaBnlllOT HHllCHll.e npe,ll.enbl/ H napaMeTpaMH HarPY3KH
"KIl.HeMaTH'ieCKH ,ll.OnYCTHMbIMH" /KOTopble npe,ll.CTaBnlllOT BepXHHe npe,ll.enbl/. MOllCHO, npOH3BonbHO,
COKpawHTb HnTepBan MellC,ll.y YKa3aHHblMH npe,ll.enaMIl..

)laIOTclI npll.Mep rll.6KOH CTaTIl.'ieCKIl. Heonpe,ll.enll.MOH 6anKIl., nO)l,BepllCeHHOH ,ll.eHCTBHlO 60Koro Ii

KPYTIl.JlbHOrO B.bInY'iIl.BaHll.ll, 'iT06bl nOKa3aTb 06IUll.e npll.HUll.nbI, npeAJIaraeMbie B pa60Te.


